Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
Viruses ; 15(4)2023 03 28.
Article in English | MEDLINE | ID: covidwho-2314252

ABSTRACT

The flavivirus genus contains several clinically important pathogens that account for tremendous global suffering. Primarily transmitted by mosquitos or ticks, these viruses can cause severe and potentially fatal diseases ranging from hemorrhagic fevers to encephalitis. The extensive global burden is predominantly caused by six flaviviruses: dengue, Zika, West Nile, yellow fever, Japanese encephalitis and tick-borne encephalitis. Several vaccines have been developed, and many more are currently being tested in clinical trials. However, flavivirus vaccine development is still confronted with many shortcomings and challenges. With the use of the existing literature, we have studied these hurdles as well as the signs of progress made in flavivirus vaccinology in the context of future development strategies. Moreover, all current licensed and phase-trial flavivirus vaccines have been gathered and discussed based on their vaccine type. Furthermore, potentially relevant vaccine types without any candidates in clinical testing are explored in this review as well. Over the past decades, several modern vaccine types have expanded the field of vaccinology, potentially providing alternative solutions for flavivirus vaccines. These vaccine types offer different development strategies as opposed to traditional vaccines. The included vaccine types were live-attenuated, inactivated, subunit, VLPs, viral vector-based, epitope-based, DNA and mRNA vaccines. Each vaccine type offers different advantages, some more suitable for flaviviruses than others. Additional studies are needed to overcome the barriers currently faced by flavivirus vaccine development, but many potential solutions are currently being explored.


Subject(s)
Flavivirus Infections , Flavivirus , Viral Vaccines , Yellow Fever , Zika Virus Infection , Zika Virus , Animals , Humans , Flavivirus/genetics , Mosquito Vectors , Yellow Fever/prevention & control , Zika Virus Infection/drug therapy
2.
Viruses ; 15(2)2023 02 19.
Article in English | MEDLINE | ID: covidwho-2259267

ABSTRACT

Nonstructural protein 1 (NS1) is a glycoprotein among the flavivirus genus. It is found in both membrane-associated and soluble secreted forms, has an essential role in viral replication, and modulates the host immune response. NS1 is secreted from infected cells within hours after viral infection, and thus immunodetection of NS1 can be used for early serum diagnosis of dengue fever infections instead of real-time (RT)-PCR. This method is fast, simple, and affordable, and its availability could provide an easy point-of-care testing solution for developing countries. Early studies show that detecting NS1 in cerebrospinal fluid (CSF) samples is possible and can improve the surveillance of patients with dengue-associated neurological diseases. NS1 can be detected postmortem in tissue specimens. It can also be identified using noninvasive methods in urine, saliva, and dried blood spots, extending the availability and effective detection period. Recently, an enzyme-linked immunosorbent assay (ELISA) assay for detecting antibodies directed against Zika virus NS1 has been developed and used for diagnosing Zika infection. This NS1-based assay was significantly more specific than envelope protein-based assays, suggesting that similar assays might be more specific for other flaviviruses as well. This review summarizes the knowledge on flaviviruses' NS1's potential role in antigen and antibody diagnosis.


Subject(s)
Flavivirus Infections , Zika Virus Infection , Zika Virus , Humans , Antibodies , Autopsy , Biological Assay , Flavivirus Infections/diagnosis , Zika Virus Infection/diagnosis
3.
Viruses ; 14(10)2022 10 09.
Article in English | MEDLINE | ID: covidwho-2143671

ABSTRACT

For industrial vaccine production, overwhelming the existing antiviral innate immune response dominated by type I interferons (IFN-I) in cells would be a key factor improving the effectiveness and production cost of vaccines. In this study, we report the construction of an IFN-I receptor 1 (IFNAR1)-knockout DF-1 cell line (KO-IFNAR1), which supports much more efficient replication of the duck Tembusu virus (DTMUV), Newcastle disease virus (NDV) and gammacoronavirus infectious bronchitis virus (IBV). Transcriptomic analysis of DTMUV-infected KO-IFNAR1 cells demonstrated that DTMUV mainly activated genes and signaling pathways related to cell growth and apoptosis. Among them, JUN, MYC and NFKBIA were significantly up-regulated. Furthermore, knockdown of zinc-fingered helicase 2 (HELZ2) and interferon-α-inducible protein 6 (IFI6), the two genes up-regulated in both wild type and KO-IFNAR1 cells, significantly increased the replication of DTMUV RNA. This study paves the way for further studying the mechanism underlying the DTMUV-mediated IFN-I-independent regulation of virus replication, and meanwhile provides a potential cell resource for efficient production of cell-based avian virus vaccines.


Subject(s)
Flavivirus Infections , Flavivirus , Interferon Type I , Poultry Diseases , Animals , Ducks , Chickens/genetics , Transcriptome , Flavivirus/genetics , Cell Line , Interferon Type I/genetics , Antiviral Agents , Apoptosis , RNA , Interferon-alpha/genetics , Zinc
4.
Transbound Emerg Dis ; 69(5): e3393-e3399, 2022 Sep.
Article in English | MEDLINE | ID: covidwho-2053038

ABSTRACT

Flaviviruses such as West Nile (WNV), Usutu (USUV) and Bagaza (BAGV) virus and avian malaria parasites are vector borne pathogens that circulate naturally between avian and mosquito hosts. WNV and USUV and potentially also BAGV constitute zoonoses. Temporal and spatial cocirculation and coinfection with Plasmodium spp., and West Nile virus has been documented in birds and mosquito vectors, and fatally USUV-infected passerines coinfected with Plasmodium spp. had more severe lesions. Also, WNV, USUV and BAGV have been found to cocirculate. Yet little is known about the interaction of BAGV and malaria parasites during consecutive or coinfections of avian hosts. Here we report mortality of free-living red-legged partridges in a hunting estate in Southern Spain that were coinfected with BAGV and Plasmodium spp. The outbreak occurred in the area where BAGV first emerged in Europe in 2010 and where cocirculation of BAGV, USUV and WNV was confirmed in 2011 and 2013. Partridges were found dead in early October 2019. Birds had mottled locally pale pectoral muscles, enlarged, congestive greenish-black tinged livers and enlarged kidneys. Microscopically congestion and predominantly mononuclear inflammatory infiltrates were evident and Plasmodium phanerozoites were present in the liver, spleen, kidneys, muscle and skin. Molecular testing and sequencing detected Plasmodium spp. and BAGV in different tissues of the partridges, and immunohistochemistry confirmed the presence and colocalization of both pathogens in the liver and spleen. Due to the importance of the red-legged partridge in the ecosystem of the Iberian Peninsula and as driver of regional economy such mortalities are of concern. Such outbreaks may reflect climate change related shifts in host, vector and pathogen ecology and interactions that could emerge similarly for other pathogens.


Subject(s)
Bird Diseases , Coinfection , Flavivirus Infections , Flavivirus , Galliformes , Plasmodium , West Nile Fever , West Nile virus , Animals , Coinfection/epidemiology , Coinfection/veterinary , Ecosystem , Flavivirus/physiology , Flavivirus Infections/epidemiology , Flavivirus Infections/veterinary , Quail , Spain/epidemiology , West Nile Fever/epidemiology , West Nile Fever/veterinary
5.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.08.18.504268

ABSTRACT

Viruses are dependent on interactions with host factors in order to efficiently establish an infection and replicate. Targeting such interactions provides an attractive strategy to develop novel antivirals. Syntenin is a protein known to regulate the architecture of cellular membranes by its involvement in protein trafficking, and has previously been shown to be important for HPV infection. Here we show that a highly potent and metabolically stable peptide inhibitor that binds to the PDZ1 domain of syntenin inhibits SARS-CoV-2 infection by blocking the endosomal entry of the virus. Furthermore, we found that the inhibitor also hampered chikungunya infection, and strongly reduced flavivirus infection, which are completely dependent on receptor mediated endocytosis for their entry. In conclusion, we have identified a novel pan-viral inhibitor that efficiently target a broad range of RNA viruses.


Subject(s)
Chikungunya Fever , Infections , Flavivirus Infections , COVID-19
6.
Curr Opin Virol ; 52: 71-77, 2022 02.
Article in English | MEDLINE | ID: covidwho-1936243

ABSTRACT

Flaviviruses are zoonotic pathogens transmitted by the bite of infected mosquitos and ticks and represent a constant burden to human health. Here we review recent literature aimed at uncovering how flaviviruses interact with the cells that they infect. A better understanding of these interactions may ultimately lead to novel therapeutic targets. We highlight several studies that employed low-biased methods to discover new protein-protein, protein-RNA, and genetic interactions, and spotlight recent work characterizing the host protein, TMEM41B, which has been shown to be critical for infection by diverse flaviviruses and coronaviruses.


Subject(s)
Flavivirus Infections , Flavivirus , Animals , Antiviral Agents/metabolism , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Flavivirus/genetics , Flavivirus/metabolism , Host-Pathogen Interactions/genetics , Humans , Proviruses , Virus Replication
7.
Gastroenterol Clin North Am ; 50(2): 383-402, 2021 06.
Article in English | MEDLINE | ID: covidwho-1201631

ABSTRACT

Nonhepatotropic viruses such as adenovirus, herpes simplex virus, flaviviruses, filoviruses, and human herpes virus, and bacteria such as Coxiella burnetii, can cause liver injury mimicking acute hepatitis. Most of these organisms cause a self-limited infection. However, in immunocompromised patients, they can cause severe hepatitis or in some cases fulminant hepatic failure requiring an urgent liver transplant. Hepatic dysfunction is also commonly seen in patients with severe acute respiratory syndrome coronavirus-2 infection. Patients with preexisting liver diseases are likely at risk for severe coronavirus disease 2019 (COVID-19) and may be associated with poor outcomes.


Subject(s)
Adenovirus Infections, Human/complications , COVID-19/complications , Hepatitis/diagnosis , Hepatitis/virology , Herpes Simplex/complications , Q Fever/complications , Alanine Transaminase/blood , Aspartate Aminotransferases/blood , Flavivirus Infections/complications , Hepatitis/pathology , Hepatitis/therapy , Humans , Liver/physiopathology , Liver Transplantation , SARS-CoV-2
8.
Viruses ; 13(1)2020 12 29.
Article in English | MEDLINE | ID: covidwho-1004759

ABSTRACT

Due to the COVID-19 pandemic and multiple devastating forest fires, the 2020 meeting of the Rocky Mountain Virology Association was held virtually. The three-day gathering featured talks describing recent advances in virology and prion research. The keynote presentation described the measles virus paradox of immune suppression and life-long immunity. Special invited speakers presented information concerning visualizing antiviral effector cell biology in mucosal tissues, uncovering the T-cell tropism of Epstein-Barr virus type 2, a history and current survey of coronavirus spike proteins, a summary of Zika virus vaccination and immunity, the innate immune response to flavivirus infections, a discussion concerning prion disease as it relates to multiple system atrophy, and clues for discussing virology with the non-virologist. On behalf of the Rocky Mountain Virology Association, this report summarizes selected presentations.


Subject(s)
Societies, Scientific , Virology , Animals , Anniversaries and Special Events , Antiviral Agents , COVID-19 , Flavivirus Infections/immunology , Herpesvirus 4, Human , Humans , Immunity , Pandemics , Prions , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Vaccination , Zika Virus
9.
Cell ; 184(1): 133-148.e20, 2021 01 07.
Article in English | MEDLINE | ID: covidwho-987228

ABSTRACT

Flaviviruses pose a constant threat to human health. These RNA viruses are transmitted by the bite of infected mosquitoes and ticks and regularly cause outbreaks. To identify host factors required for flavivirus infection, we performed full-genome loss of function CRISPR-Cas9 screens. Based on these results, we focused our efforts on characterizing the roles that TMEM41B and VMP1 play in the virus replication cycle. Our mechanistic studies on TMEM41B revealed that all members of the Flaviviridae family that we tested require TMEM41B. We tested 12 additional virus families and found that SARS-CoV-2 of the Coronaviridae also required TMEM41B for infection. Remarkably, single nucleotide polymorphisms present at nearly 20% in East Asian populations reduce flavivirus infection. Based on our mechanistic studies, we propose that TMEM41B is recruited to flavivirus RNA replication complexes to facilitate membrane curvature, which creates a protected environment for viral genome replication.


Subject(s)
Flavivirus Infections/genetics , Flavivirus/physiology , Membrane Proteins/metabolism , Animals , Asian People/genetics , Autophagy , COVID-19/genetics , COVID-19/metabolism , COVID-19/virology , CRISPR-Cas Systems , Cell Line , Flavivirus Infections/immunology , Flavivirus Infections/metabolism , Flavivirus Infections/virology , Gene Knockout Techniques , Genome-Wide Association Study , Host-Pathogen Interactions , Humans , Immunity, Innate , Membrane Proteins/genetics , Polymorphism, Single Nucleotide , SARS-CoV-2/physiology , Virus Replication , Yellow fever virus/physiology , Zika Virus/physiology
10.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.10.09.334128

ABSTRACT

SUMMARY Flaviviruses pose a constant threat to human health. These RNA viruses are transmitted by the bite of infected mosquitoes and ticks and regularly cause outbreaks. To identify host factors required for flavivirus infection we performed full-genome loss of function CRISPR-Cas9 screens. Based on these results we focused our efforts on characterizing the roles that TMEM41B and VMP1 play in the virus replication cycle. Our mechanistic studies on TMEM41B revealed that all members of the Flaviviridae family that we tested require TMEM41B. We tested 12 additional virus families and found that SARS-CoV-2 of the Coronaviridae also required TMEM41B for infection. Remarkably, single nucleotide polymorphisms (SNPs) present at nearly twenty percent in East Asian populations reduce flavivirus infection. Based on our mechanistic studies we hypothesize that TMEM41B is recruited to flavivirus RNA replication complexes to facilitate membrane curvature, which creates a protected environment for viral genome replication. HIGHLIGHTS TMEM41B and VMP1 are required for both autophagy and flavivirus infection, however, autophagy is not required for flavivirus infection. TMEM41B associates with viral proteins and likely facilitates membrane remodeling to establish viral RNA replication complexes. TMEM41B single nucleotide polymorphisms (SNPs) present at nearly twenty percent in East Asian populations reduce flavivirus infection. TMEM41B-deficient cells display an exaggerated innate immune response upon high multiplicity flavivirus infection.


Subject(s)
Flavivirus Infections
11.
Virology ; 547: 35-46, 2020 08.
Article in English | MEDLINE | ID: covidwho-343623

ABSTRACT

Spondweni virus (SPONV) is the most closely related known flavivirus to Zika virus (ZIKV). Its pathogenic potential and vector specificity have not been well defined. SPONV has been found predominantly in Africa, but was recently detected in a pool of Culex quinquefasciatus mosquitoes in Haiti. Here we show that SPONV can cause significant fetal harm, including demise, comparable to ZIKV, in a mouse model of vertical transmission. Following maternal inoculation, we detected infectious SPONV in placentas and fetuses, along with significant fetal and placental histopathology, together suggesting vertical transmission. To test vector competence, we exposed Aedes aegypti and Culex quinquefasciatus mosquitoes to SPONV-infected bloodmeals. Aedes aegypti could efficiently transmit SPONV, whereas Culex quinquefasciatus could not. Our results suggest that SPONV has the same features that made ZIKV a public health risk.


Subject(s)
Aedes/virology , Flavivirus Infections/virology , Flavivirus/physiology , Mosquito Vectors/virology , Receptor, Interferon alpha-beta/genetics , Aedes/physiology , Animals , Disease Models, Animal , Female , Flavivirus/genetics , Flavivirus Infections/genetics , Flavivirus Infections/metabolism , Flavivirus Infections/mortality , Humans , Mice , Mice, Inbred C57BL , Mice, Knockout , Mosquito Vectors/physiology , Receptor, Interferon alpha-beta/deficiency
SELECTION OF CITATIONS
SEARCH DETAIL